The second myth (that cables in zip-tied bundles are more difficult to replace) is also somewhat flawed when it comes to SoftLayer’s use case. Every rack is pre-wired to deliver five Ethernet cables — two public, two private and one out-of-band management — to each “rack U,” which provides enough connections to support a full rack of 1U servers. If larger servers are installed in a rack, we won’t need all of the network cables wired to the rack, but if those Category Special servers are ever replaced with smaller servers, we don’t have to re-run network cabling. Network cables aren’t exposed to the tension, pressure or environmental changes of being moved around (even when servers are moved), so external forces don’t cause much wear. The most common physical “failures” of network cables are typically associated with RJ45 jack crimp issues, and those RJ45 ends are easily replaced.
Popular Posts
-
General's resistance MOMO (Ployer-MOMO) moment for users with the most competitive games flat products, has issued new product MOMO9 str...
Friday, August 30, 2013
the traffic through those cables is affected
The first myth (that zip ties can negatively impact network performance) is entirely valid, but its significance is much greater in theory than it is in practice. While I couldn’t track down any scientific experiments that demonstrate the maximum tension a cable tie can exert on a bundle of Mini SAS cables before the traffic through those cables is affected, I have a good amount of empirical evidence to fall back on from SoftLayer data centers. Since 2006, SoftLayer has installed more than 400,000 patch cables in data centers around the world (using zip ties), and we’ve encountered a fault in a network cable that was the result of a zip tie being over-tightened … And we’re not shy about tightening those ties.
The second myth (that cables in zip-tied bundles are more difficult to replace) is also somewhat flawed when it comes to SoftLayer’s use case. Every rack is pre-wired to deliver five Ethernet cables — two public, two private and one out-of-band management — to each “rack U,” which provides enough connections to support a full rack of 1U servers. If larger servers are installed in a rack, we won’t need all of the network cables wired to the rack, but if those Category Special servers are ever replaced with smaller servers, we don’t have to re-run network cabling. Network cables aren’t exposed to the tension, pressure or environmental changes of being moved around (even when servers are moved), so external forces don’t cause much wear. The most common physical “failures” of network cables are typically associated with RJ45 jack crimp issues, and those RJ45 ends are easily replaced.
The second myth (that cables in zip-tied bundles are more difficult to replace) is also somewhat flawed when it comes to SoftLayer’s use case. Every rack is pre-wired to deliver five Ethernet cables — two public, two private and one out-of-band management — to each “rack U,” which provides enough connections to support a full rack of 1U servers. If larger servers are installed in a rack, we won’t need all of the network cables wired to the rack, but if those Category Special servers are ever replaced with smaller servers, we don’t have to re-run network cabling. Network cables aren’t exposed to the tension, pressure or environmental changes of being moved around (even when servers are moved), so external forces don’t cause much wear. The most common physical “failures” of network cables are typically associated with RJ45 jack crimp issues, and those RJ45 ends are easily replaced.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment